Mueller matrix ellipsometry studies of nanostructured materials
نویسنده
چکیده
Materials can be tailored on the nano-scale to show properties that cannot be found in bulk materials. Often these properties reveal themselves when electromagnetic radiation, e.g. light, interacts with the material. Numerous examples of such types of materials are found in nature. There are for example many insects and birds with exoskeletons or feathers that reflect light in special ways. Of special interest in this work is the scarab beetle Cetonia aurata which has served as inspiration to develop advanced nanostructures due to its ability to turn unpolarized light into almost completely circularly polarized light. The objectives of this thesis are to design and characterize bioinspired nanostructures and to develop optical methodology for their analysis. Mueller-matrix ellipsometry has been used to extract optical and structural properties of nanostructured materials. Mueller-matrix ellipsometry is an excellent tool for studying the interaction between nanostructures and light. It is a non-destructive method and provides a complete description of the polarizing properties of a sample and allows for determination of structural parameters. Three types of nanostructures have been studied. The first is an array of carbon nanofibers grown on a conducting substrate. Detailed information on physical symmetries and band structure of the material were determined. Furthermore, changes in its optical properties when the individual nanofibers were electromechanically bent to alter the periodicity of the photonic crystal were studied. The second type of nanostructure studied is bioinspired films with nanospirals of InxAl1−xN which reflect light with a high degree of circular polarization in a narrow spectral band. These nanostructures were grown under controlled conditions to form columnar structures with an internally graded refractive index responsible for the ability to reflect circularly polarized light. Finally, angle-dependent Mueller matrices were recorded of natural nanostructures in C. aurata with the objective to refine the methodology for structural analysis. A Cloude sum decomposition was applied and a more stable regression-based decomposition was developed for deepened analysis of these depolarizing Mueller matrices. It was found that reflection at near-normal incidence from C. aurata can be described as a sum reflection off a mirror and a left-handed circular polarizer. At oblique incidence the description becomes more complex and involves additional optical components.
منابع مشابه
Towards Measurement of Polarization Properties of Skin using the Ellipsometry Technique
Introduction: The human skin is an active medium from the optical point of view. Therefore, the diagnostic and therapeutic techniques employing light are increasing. Current optical techniques are based on the measurement of the intensity of reflected absorbed or backscattered light from or within skin. Studies have shown that biological tissues, and in particular skin, demonstrate polarization...
متن کاملApplication of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization.
This article provides a brief overview of both established and novel ellipsometry techniques, as well as their applications. Ellipsometry is an indirect optical technique, in that information about the physical properties of a sample is obtained through modeling analysis. Standard ellipsometry is typically used to characterize optically isotropic bulk and/or layered materials. More advanced tec...
متن کاملMultichannel Mueller matrix ellipsometer based on the dual rotating compensator principle
A multichannel ellipsometer in the dual rotating-compensator configuration has been designed and constructed for applications in real time Mueller matrix ellipsometry (approx. 2–5 eV) of anisotropic surfaces and films. The sequence of optical elements for this instrument is denoted PC (v )SC (v )A, where P, S, and A represent the polarizer, sample, and analyzer. C (v ) and 1r 1 2r 2 1r 1 C (v )...
متن کاملInfrared - active optical phonons and magnetic excitations in the hexagonal manganites R MnO
Optical properties of hexagonal multiferroic oxides RMnO3, where R = Ho, Er, Tm, Yb, and Lu, have been studied in the far-infrared spectral range between 100 and 2000 cm−1 and temperatures between 1.5 and 300 K by means of several experimental techniques: Mueller matrix spectroscopic ellipsometry, rotating analyzer ellipsometry, and optical transmission spectroscopy. Spectra of the optical phon...
متن کاملSynchrotron radiation-based far-infrared spectroscopic ellipsometer with full Mueller-matrix capability.
We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014